Guide to Industrial Control Systems (ICS) Security

NIST Special Publication 800-82 Revision 2 Guide to Industrial Control Systems (ICS) Security Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC)

 

 B9BtDO IcAAZG67

 

 

Keith Stouffer Intelligent Systems Division Engineering Laboratory Victoria Pillitteri Suzanne Lightman Computer Security Division Information Technology Laboratory Marshall Abrams The MITRE Corporation Adam Hahn Washington State University May 2015

 

This document provides guidance for establishing secure industrial control systems (ICS). These ICS, which include supervisory control and data acquisition (SCADA) systems, distributed control systems (DCS), and other control system configurations such as Programmable Logic Controllers (PLC) are often found in the industrial control sectors. ICS are typically used in industries such as electric, water and wastewater, oil and natural gas, transportation, chemical, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g., automotive, aerospace, and durable goods.) SCADA systems are generally used to control dispersed assets using centralized data acquisition and supervisory control. DCS are generally used to control production systems within a local area such as a factory using supervisory and regulatory control. PLCs are generally used for discrete control for specific applications and generally provide regulatory control. These control systems are vital to the operation of the U.S. critical infrastructures that are often highly interconnected and mutually dependent systems. It is important to note that approximately 90 percent of the nation's critical infrastructures are privately owned and operated. Federal agencies also operate many of the ICS mentioned above; other examples include air traffic control and materials handling (e.g., Postal Service mail handling.) This document provides an overview of these ICS and typical system topologies, identifies typical threats and vulnerabilities to these systems, and provides recommended security countermeasures to mitigate the associated risks. Initially, ICS had little resemblance to traditional information technology (IT) systems in that ICS were isolated systems running proprietary control protocols using specialized hardware and software. Many ICS components were in physically secured areas and the components were not connected to IT networks or systems. Widely available, low-cost Internet Protocol (IP) devices are now replacing proprietary solutions, which increases the possibility of cybersecurity vulnerabilities and incidents. As ICS are adopting IT solutions to promote corporate business systems connectivity and remote access capabilities, and are being designed and implemented using industry standard computers, operating systems (OS) and network protocols, they are starting to resemble IT systems. This integration supports new IT capabilities, but it provides significantly less isolation for ICS from the outside world than predecessor systems, creating a greater need to secure these systems. The increasing use of wireless networking places ICS implementations at greater risk from adversaries who are in relatively close physical proximity but do not have direct physical access to the equipment. While security solutions have been designed to deal with these security issues in typical IT systems, special precautions must be taken when introducing these same solutions to ICS environments. In some cases, new security solutions are needed that are tailored to the ICS environment. Although some characteristics are similar, ICS also have characteristics that differ from traditional information processing systems. Many of these differences stem from the fact that logic executing in ICS has a direct effect on the physical world. Some of these characteristics include significant risk to the health and safety of human lives and serious damage to the environment, as well as serious financial issues such as production losses, negative impact to a nation’s economy, and compromise of proprietary information. ICS have unique performance and reliability requirements and often use operating systems and applications that may be considered unconventional to typical IT personnel. Furthermore, the goals of safety and efficiency sometimes conflict with security in the design and operation of control systems. ICS cybersecurity programs should always be part of broader ICS safety and reliability programs at both industrial sites and enterprise cybersecurity programs, because cybersecurity is essential to the safe and reliable operation of modern industrial processes. Threats to control systems can come from numerous sources, including hostile governments, terrorist groups, disgruntled employees, malicious intruders, complexities, accidents, and natural disasters as well as malicious or accidental actions by insiders. ICS security objectives typically follow the priority of availability and integrity, followed by confidentiality.

 

CYBERISQUES NEWS premier service de Veille "Business & Cyber Risks" pour les dirigeants et membres des COMEX / CODIR

Abonnement individuel par eMail personnalisé

Renseignements This email address is being protected from spambots. You need JavaScript enabled to view it.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf*

 

Voir le profil de Jean Philippe Bichard sur LinkedIn

 

 

 

Les dossiers de Cyber Risques News

CYBERISQUES.COM premier service de Veille "Business & Cyber Risks" pour les dirigeants et membres des COMEX/CODIR

Renseignements   This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Additional information